skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Somerville, Ian D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Plain Language Summary Nearly synchronous global changes in geomagnetic polarity give both a detailed irregular pacing to geological time and provide a glimpse into heat transfer processes across the core—mantle boundary which drives the Earth's geodynamo. Although the Late Carboniferous is characterized by some well‐studied reversals, details of the tempo of polarity changes in the Early Carboniferous are unknown. This work addresses this by providing a detailed record of polarity changes over a ∼2 million year interval at around 334.5–332.5 million years ago‐from the Trowbarrow Quarry section in NW England. We demonstrate that these limestones likely preserve magnetization from close to their time of formation and record at least 31 polarity reversals. These observations support the idea that the Earth's dynamo was in a hyperactive reversing state similar to those sustained for tens of Myr in the Late Jurassic, parts of the Cambrian and the Late Ediacaran. It further corroborates a ∼200 Myr cyclicity in paleomagnetic field behavior since the Precambrian, potentially linked to variable core heat flow forced by mantle convection. 
    more » « less